

ENVIRONMENTAL SITE ASSESSMENT

(Targeted Phase II Site investigation)

173 Kinghorne Street, NOWRA NSW

Prepared For: Bill Zervos

Our Reference: REP-277015-A

ISSUE DATE: 1st March 2016

CONTROLLED DOCUMENT

DISTRIBUTION & REVISION REGISTER

DISTRIBUTION LIST		
Copy No.	<u>Custodian</u>	<u>Location</u>
1 Original	Daniel Mathew	ENVIROTECH PTY. LTD (Filed)
2 Soft Copy (PDF, emailed)	Bill Zervos	b.zervos1@optusnet.com.au

Note: This register identifies the current custodians of controlled copies of the subject document.

DOCUMENT HISTORY		
Document No.	Revision No.	<u>Issue Date</u>
REP-277015	А	01/03/2016

AUTHOR	TECHNICAL REVIEWER
Blelens	
Maryam Akbarzad	Simon Doberer
Geotechnical Engineer	Environmental Scientist

COPYRIGHT © 2015 ENVIROTECH PTY. LTD.

The report is protected by copyright law and may only be reproduced, in electronic of hard copy format, if it copied and distributed in full with the prior written permission of EnviroTech Pty. Ltd.

EXECUTIVE SUMMARY

Envirotech Pty Ltd has been commissioned by Bill Zervos to undertake a targeted Phase 2 Contamination Assessment for the proposed development of residential complex with single level basement located at 173 Kinghorne Street, NOWRA NSW (hereafter referred to as the site). The site covers a total area of approximately 3500 m2 and situated within the local government area of Shoalhaven City Council. The area of investigation has targeted areas around the UPSS Tank, fuel bowser and across the open access areas across the rest of the site. The proposed development is considered as a residential site with minimal opportunities for soil access (HIL B) in regards to the appropriate Health Investigation Levels (HILs).

A sampling plan to address the areas of concern was established including eighteen (18) surface and subsurface samples for 8 Metals and hydrocarbons including (BTEX, PAH's, Phenols and TPH). The eighteen (18) samples are 100% of the recommended sampling density for the size of the subject investigation area. This was to gain an accurate reflection of the characterisation of the earthworks and residual soil as specified within the NSW EPA Sampling Design Guidelines (1994). It is considered the sampling design is considered adequate as all areas of concern located within the area of investigation have been addressed as per NSW EPA Sampling Design Guidelines (1994). Samples were taken down to depth of up to 3m below the ground level.

Soil sample results were compared to the Health Investigation Levels (HILs) Guidelines and Ecological Screening Levels (ESLs) for standard residential allotments (NEPM 2013). Chemically the results meet the criteria of the Health Investigation Limits for all of the analysed contaminants across the site.

In relation to the area of investigation this area is deemed suitable for the proposed development.

TABLE OF CONTENTS

E>	(ECUTIVE SUMMARYII
1.	INTRODUCTION
	1.1 General
2.	LEGISLATIVE FRAMEWORK AND ASSESSMENT GUIDELINES
	2.1 Contaminated Land Management Act (1997) 6 2.2 The National Environmental Protections Measure 7
3.	ENVIRONMENTAL CHARACTERISTICS OF THE SITE
	3.1 Topography and Geology83.2 Surface Water Hydrology83.3 Hydrogeology83.6 Receptors and Sensitive Environments8
4.	METHODOLOGY
	4.1 Site Conceptual Model94.2 Sampling and Analysis Plan94.3 Documentation104.4 Soil Sampling Program104.5 Laboratory Analysis114.6 Sampling Plan, Methodology and Investigation Pattern11
5.	ASSESSMENT CRITERIA12
	5.1 National Environmental Protection Measure (Amended 2013)
6.	RESULTS
	7.1 Health Investigation Levels and Ecological Investigation Levels (EILs)
7.	Discussion
	7.1 Field Observations
	7.3 Ecological Screening Levels (ESLs)
8.	RECOMMENDATIONS – UPSS TANK DECOMMISSION AND REMOVAL
9	Conclusions

10	REFERENCES	17
11	LIMITATIONS	18
Арр	PENDIX I — HEALTH INVESTIGATION LEVELS (HILS)	19
API	PENDIX II – Analytical Results	22
API	PENDIX III – LABORATORY QA/QC	23
ΔΡΙ	PFNDIX IV – SAMPLING PLAN	24

1. Introduction

1.1 General

Envirotech Pty Ltd has been commissioned by Bill Zervos to undertake a targeted Phase 2 Contamination Assessment for the proposed development of residential complex with single level basement located at 173 Kinghorne Street, NOWRA NSW (hereafter referred to as the site). The site covers a total area of approximately 3500 m2 and situated within the local government area of Shoalhaven City Council. The area of investigation has targeted areas around the UPSS Tank, fuel bowser and across the open access areas across the rest of the site. The proposed development is considered as a residential site with minimal opportunities for soil access (HIL B) in regards to the appropriate Health Investigation Levels (HILs).

The proposed site is occupied by car service and there is a fuel browser and underground fuel tank at the site which possess the potential risk for contamination. In accordance with the provisions of State Environmental Planning policy, Council requests a Phase 2 Site Assessment to demonstrate that the land is suitable for residential complex development.

Soil sampling and analysis were undertaken using the NEPM 2013 guidelines and the NSW EPA technical note investigation of service station sites with a sampling density of 100% of the recommended sampling density. Results were then compared against appropriate guidance values including Health Investigation Levels (HILs) and Ecological Investigation Levels (EILs). The following report outlines the findings.

1.2 Objectives

The objectives of the investigation were to:

- Identify all past and present potentially contaminating activities;
- Identify potential contaminants of concern;
- Assess the site in the context of the proposed development against the Health Investigation Levels (HILs) within the National Environmental Protection Measures (amended 2013),
- Determine the extent of contamination (if present),
- Undertake limited site characterization and 100% sampling for identified potential contaminants,
- Draw conclusions regarding the suitability of the site for its proposed use.

1.3 Scope of Work

The **Scope of Works** included the following:

- Completion of a specialized Safety, Health & Environment Work Method Statement (SH&EWMS);
- Site inspection and investigations by an experienced environmental scientist;
- Collection of subsurface eighteen (18) samples from a total of fourteen (14) drilled boreholes using hydraulic rig to depth down to 3 m of the soil surface;
- Cold storage of all samples collected;
- Submission to a NATA Accredited laboratory for analysis under chain of custody conditions;
- Laboratory analysis of eighteen (18) samples for 8 Metals and hydrocarbons including (BTEX, PAH's, Phenols and TPH).
- Preparation of a report outlining the investigation methodology, interpretation of the site data (results), and conclusions.

1.4 Legislative Requirements

The investigation was conducted in accordance with:

- Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 2000.
- Assessment of Site Contamination, National Environment Protection Measure, 2013 amendment.
- Australian Standard AS 4482.1 Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances.
- Sampling Design Guidelines NSW EPA, 1995.
- Waste Classification Guidelines Part 1: Classifying Waste, DECC, 2009.
- Guidelines for the Assessment and Management of Groundwater Contamination, NSW DEC, 2007.
- Technical Note: Investigation of Service Station Sites, NSW EPA, 2014.

1.5 Report overview

This report should be read as a complete document and should not be read in sections. Each section is to be read concurrently with the rest of the report including any appendices.

A summary of the site specific details are provided in Table 1 below:

Table 1. Site specific details

Site specific details				
Site Address	173 Kinghorne Street, NOWRA			
Date of field work	20/02/2016			
Investigation area	Area around UPSS Tank, fuel bowser, following fuel line and across the open access areas across the rest of the site			
Local Government Area	Shoalhaven City Council			
Proposed Development	Residential complex with single level basement			
Sample size	eighteen (18) samples for 8 Metals and hydrocarbons including (BTEX, PAH's, Phenols and TPH)			

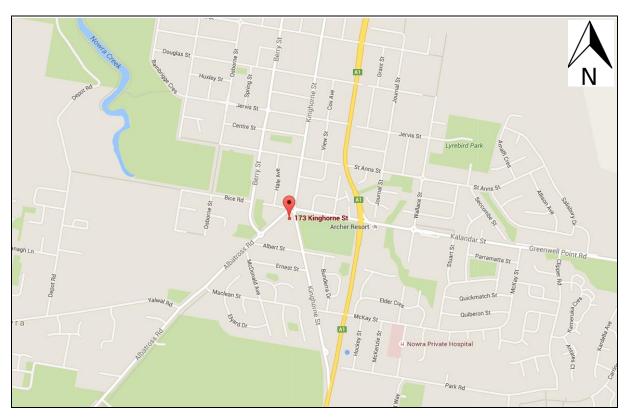


Figure 1. Site location map (sourced from http://www.google.com.au/maps, accessed on the 11/02/2016)

Figure 2. Aerial Image location of boreholes, sample type and locations.

2. LEGISLATIVE FRAMEWORK AND ASSESSMENT GUIDELINES

2.1 Contaminated Land Management Act (1997)

In 1997 the NSW Government introduced the CLM Act. This act has been amended by the *Contaminated Land Management Amendment Act* (2008). The CLM Act 1997, associated regulations, *State Environmental Planning Policy No.55* (1997) and NSW OEH guidelines, were designed to provide uniform state-wide control of the management, investigation and remediation of contaminated land.

Prior to granting consent for any proposed rezoning or development, SEPP55 requires the consent authority to:

- Consider whether the land is contaminated;
- Consider whether the site is suitable, or if contaminated, can be made suitable by remediation, for the proposed land use; and
- Be satisfied that remediation works will be undertaken prior to use of the site for the proposed use.

Should the assessment indicate that the site poses a risk to human health or the environment, remediation of the site may be required prior to occupation of the proposed development. SEPP55 requires that the relevant local council be notified of all remediation works, whether or not development consent is required. Where development consent is not required, 30 days written notice of the proposed works must be provided to council.

Details of validation of remediation work must also be submitted to Council within one month of completion of remediation works. The consent authority may request that a site audit be undertaken during, or following the completion of the site assessment process.

Under the terms of the CLM Act 1997 the NSW OEH Site Auditor Scheme was developed to provide a system of independent review for assessment reports. An accredited Contaminated Site Auditor is engaged to review reports prepared by suitably qualified consultants to ensure that the investigation has been undertaken in accordance with the guidelines and confirm that the sites are suitable for their intended use.

Section 59(2) of the CLM Act 1997 states that specific notation relating to contaminated land issues must be included on Section149 (s149) planning certificates prepared by Council where the land to which the certificate relates is:

- Within an investigation or remediation area;
- Subject to an investigation or remediation order by the OEH;
- The subject of a voluntary investigation or remediation proposal; and/or
- The subject of a site audit statement.

Submission of contaminated site investigation and validation reports to council as part of rezoning or development application submissions may also result in notation of actual or potential site contamination on future s149 certificates prepared for the site. Section 60 of the CLM Amendment Act 2008 sets out a positive duty on a land owner, or person whose activities have caused contamination, to notify the OEH if they are or become aware that contamination exists on a site that generally poses "an unacceptable risk to human health or the environment, given the site's current or approved use". This duty to report is based on trigger values, above which notification is required.

2.2 The National Environmental Protections Measure

The National Environmental Protections Measures are a set of national environmental objectives negotiated by agreement between the Commonwealth and the Australian states and territories through the Council of Australia Governments (COAG). Each measure is supported by model legislation at the Commonwealth level then incorporated into state and territory jurisdiction. The measures focus on environmental issues that have a trans-boundary dimension where uniformity between jurisdictions is desirable.

Asbestos characterization and contamination assessment is a new focus of the NEPM, which addresses asbestos characterisation in the context of soil contamination. The inclusion of a specific asbestos assessment method (Vol 2, s 4; Vol'3, s 11) is based largely on Western Australia's asbestos soil guidelines and may also provide a useful compliance guide for the day to day management of site operations. The NEPM approach is very pragmatic with the primary method being based on inspection of visual fragments on the soil surface from materials that commonly contain asbestos, including cement sheeting and piping and components of electrical equipment such as power boards.

The NEPM also provides updated Health Investigation Levels (HILs) and Ecological Investigation Levels (EILs). Excerpts of HILS and EILs are provided below (NEPM 2013).

Health Investigation Levels (HILs) for Soil Contaminants are detailed in Appendix II – Health Investigation Levels (HILs) & Ecological Investigation Levels (EILs).

3. Environmental Characteristics of the site

The following summarizes details of the sites environmental characteristics, compiled during the initial Phase 1 assessment.

3.1 Topography and Geology

The Soil Landscape Map of Kiama (Soil Landscape Series, Scale 1:100,000, 9028), prepared by the Soil Conservation of NSW, indicates that the site is located within the Nowra landscape area which is associated within the Nowra sandstone formation and consists of sandy topsoil and clayey sand, light clay and sandy clay subsoil. These soils are with rock outcrop, stoniness, low permeability, and low wet bearing strength.

Topography of these landscape is characterised by moderately to gently undulating rises to low hills on Nowra sandstone with slopes less than 5%. However, the proposed site is located over a gently southerly facing sloping with slope of about 2%-4%.

The Geological Map of Wollongong (Geological Series Sheet SI/56-09, Scale 1:250,000), published by the Department of Industry Resources and Energy, indicates the residual soils within the site to be underlain by Nowra sandstone, which is part of the Shoalhaven Group and comprises Quartz sandstone.

3.2 Surface Water Hydrology

Since the proposed site is mainly paved by concrete slabs, stormwater run-off and surface water is anticipated to flow down the normal topography towards drainage system and infiltrate into sub soil profile.

3.3 Hydrogeology

A site-specific groundwater analysis was outside the scope of this assessment. A search carried out through the DNR website found no bores within a 500m radius of area of investigation. However, the reginal groundwater in the vicinity of the site is expected to be confined or partly confined water- bearing zones within the bedrock formation, considering the proximity of Nowra Creek (approximately 88m to the west) groundwater may also be found within the soil profile.

3.6 Receptors and Sensitive Environments

The closest environmental receptors include native vegetation within the site, the green area at immediate east and west of the site and woodlands approximately 88m to the west. Also, Nowra Creek to the west of the site has potential to be a sensitive environment. Occupants of the proposed property, the surrounding residential properties and construction contractors during the construction process are the main receptors for the site.

4. METHODOLOGY

4.1 Site Conceptual Model

4.1.1 Contaminants of Concern (COC)

Results obtained from council correspondence indicated that the primary area of concern is as follows:

- The area around UPSS Tank,
- The area around bowser/dispenser, and
- The open access areas across the rest of the site.

4.1.2 Exposure and receptors

Based upon the potential types of chemicals present at the site and the media in which the chemicals are present, the following mechanisms for chemical transport have been identified for the site:

- leaching of contaminants of potential concern from soil into ground water;
- Transport of contaminants of potential concern in ground water via ground water flow; and
- Transport of contaminants of potential concern via overland flow and divert to stormwater system.

The following potential human exposure routes for chemicals have been identified for the site:

• Dermal contact inhalation and incidental ingestion of soil particulates.

These have the potential to affect both construction workers during the construction phase, and users of the industrial facility upon completion of the works.

The site ground water is not currently used for or planned to be used for domestic purposes in the future.

In regards to potential ecological exposure routes for chemicals it is not expected that any species with the exception of localized birds would be exposed to potential contaminants, this would be limited to the soil on the surface of the site except for during works which will disturb the soil.

4.2 Sampling and Analysis Plan

A sampling plan to address the areas of concern was established including eighteen (18) surface and subsurface samples for 8 Metals and hydrocarbons including (BTEX, PAH's, Phenols and TPH). The eighteen (18) samples are 100% of the recommended sampling density for the size of the subject investigation area. This was to gain an accurate reflection of the characterisation of the earthworks and residual soil as specified within the NSW EPA Sampling Design Guidelines (1994). It is considered the sampling design is considered adequate as all areas of concern located within the area of

investigation have been addressed as per NSW EPA Sampling Design Guidelines (1994). Samples were taken down to depth of up to 3m below the ground level.

4.3 Documentation

A field observation log was kept by sampling personnel. Details recorded in the log included:

- Location and sample number;
- Soil profile notes;
- Sampling method;
- Sample identification;
- Sample description; and
- Sample point measurements.

A comprehensive master sample register was maintained. As samples were received, they were given a unique sequential number from the sample register into which details from the labels were entered. Before packing and dispatch of samples for analysis, a Chain of Custody form was completed. This form recorded details of the individual samples being dispatched and the type of analysis required for each sample.

A total of eighteen (18) samples were submitted to The Australian Laboratory Services Pty Ltd, a NATA accredited laboratory for analytical testing. A copy of the completed Chain of Custody forms were retained on the Central Filing System and the original was sent to the analytical laboratory together with the samples.

4.4 Soil Sampling Program

Since the proposed residential development comprises single level basement, samples were to be collected at a depth of 0.0 - 3.0 m and samples sent for analysis at a NATA accredited laboratory. A total of eighteen (18) samples for metals and hydrocarbons were allowed for in the scope of works. The area around the existing UPSS Tank and fuel bowser were targeted at a greater density as per guidelines.

Samples from the bored holes via hydraulic rig were collected using a clean plastic glove for each sample and placed in glass jars with plastic caps and teflon seals with minimal headspace. The samples were labelled with the job number, sampling location, sampling depth and date.

During the investigation, soil samples were preserved by immediate storage in an insulated sample container with ice in accordance with AS 4482.1-200528 and AS 4482.2-199929. The original Chain of Custody form was enclosed in the Esky that was then sealed and dispatched to a NATA accredited analytical laboratories.

Standard decontamination procedures were undertaken before collecting each of the samples to avoid the possibility of cross-contamination. The soil sampling equipment and items likely to come into contact with soil samples were thoroughly washed. Due care was taken with the disposal of any washings and residues from such cleaning operations.

4.5 Laboratory Analysis

All samples collected were submitted to Australian Laboratory Services PTY LTD for the analytical techniques required.

Eighteen (18) samples of soil were tested for a range of analytes including:

- 8 Metals
- TRH
- BTEX,
- PAH.
- Phenols

The sampling and analytical program is outlined below in **Table 2 and 3.**

Refer to **Appendix II – Analytical Results** for the analytical methods used by The Environmental OH&S Laboratory.

4.6 Sampling Plan, Methodology and Investigation Pattern

Eighteen (18) soil samples were collected for chemical analysis. All samples were collected based on a judgmental pattern. Refer to **Figure 2** for sampling locations.

Test pits 1 through 4 had two samples taken from them. These samples were concentrated around the four aspects of the decommissioned UPSS tank.

Table 2: Soils sample ID, depth, and targeted contaminants for stockpile spread area

Sample ID	Depth	Contaminants
1, 2, 3, 4	Subsurface samples Approx. 1.5 m bgl	Heavy metals, BTEXN, PAH, TRH,
	Subsurface samples Approx. 3.0 m bgl	Phenols

Table 2: Soils sample ID, depth, and targeted contaminants for stockpile spread area

Sample ID Depth		Contaminants
5, 8, 11, 13	Subsurface samples Approx. 50 cms bgl	Heavy metals, BTEXN, PAH, TRH,
7, 10, 12, 14	Subsurface samples Approx. 1.5 m bgl	Phenols
6, 9	Subsurface samples Approx. 2.5 m bgl	

5. ASSESSMENT CRITERIA

5.1 National Environmental Protection Measure (Amended 2013)

The soil samples collected were assessed against the Health Investigation Levels (HILs) for a standard residential allotment i.e. HIL A outlined within the *National Environmental Protection Measure*.

Ground water was not assessed in the investigation as it was not considered relevant to the scope of works in regards to the proposed depth of excavation or expected depth of local groundwater.

5.2 Data Quality Objectives:

Table 4 provides a list of the data quality indicators adopted for this Phase 2 contamination assessment and the methods used to ensure quality indicators were met.

Table 3. QA/QC Evaluation

Data Quality Indicator	Method(s) of Achievement
Data Quality illulcator	Method(s) of Achievement
Data Precision and Accuracy	 Use of qualified field staff for sampling and investigation. Appropriate sampling method used, minimising the opportunity for cross-contamination. This included the decontamination of sampling equipment using Decon 90 (phosphate free detergent) followed by rinsing with potable water. Use of analytical laboratories (ALS) experienced in the analyses undertaken, with appropriate NATA accreditation. NATA accreditation requires use of adequately trained and experienced analytical staff. Appropriate and validated laboratory test methods used. Adequate laboratory performance based on results of the blank samples, matrix spike samples, control samples, duplicates and surrogate spike samples.
Data Representativeness	 Coverage of the identified potential contaminants, based on history, site activities and site features. Adequate laboratory internal quality control and quality assurance methods, complying with the NEPM.
Data Quality Indicator	Method(s) of Achievement
Documentation Completeness	 Preparation of a sample location plan and chain of custody records. Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain-of-custody. NATA accredited laboratories results certificates provided.
Data Completeness	 Review of documented information pertaining to site history. Analysis for potential contaminants.
Data Comparability	 Using appropriate techniques for sample recovery given

access and sampling limitations.
 Experienced sampler used.
 Using appropriate sample storage and transportation methods.
 Use of NATA accredited laboratories.

Test methods consistent for each sample.

Based on the above information, the current assessment has generally achieved the quality assurance and quality control data quality indicators. As such, it is concluded that the laboratory test data obtained are reliable and useable for this assessment.

The results of the assessment of laboratory QA/QC are shown in Appendix III. Chain of Custody is provided in Appendix III.

6. RESULTS

The following table presents the calculations of the Maximum concentration detected, Average concentration detected, and where appropriate (if adequate sample numbers are available) arithmetic average contaminant concentration of <u>only those analytes that returned unacceptable test results</u>. A 95% UCL implies that there is a 95% probability that the true arithmetic average contaminant concentration within the sampling area will not exceed the value determined by this method.

For the site to be considered uncontaminated, the typical minimum requirement is that the 95% upper confidence limit of the arithmetic average concentration of the contaminants is less than the acceptable limit. Highlighted results indicate breaches of HILs or EILs.

7.1 Health Investigation Levels and Ecological Investigation Levels (EILs)

Table 3 below provides a comparative analysis of the soil sampling results, weighed against acceptable limits for HILs – HIL B Residential with minimal opportunities for soil access such as apartments.

The laboratory reports are presented in Appendix II. The results have been assessed against the NEPM Guidelines, adopted for this investigation.

Table 4. Summary of results from site investigation

Health-based Investigation Level - urban concentratio detected (mg/kg) detected	Table 4. Summary Analyte	NSW DEC	Ecological	Maximu	Average	95%	Acceptability	
Levels, HIL D and public detected (mg/kg)							,	
HIL D		Investigation	Level – urban	concentr	n detected			
Metals and inorganics		Levels,	residential	ation	(mg/kg)			
Metals and inorganics		HIL D	and public	detected				
Arsenic 500 N/A 16 9 N/A Acceptable Cadmium 150 N/A ND ND N/A Acceptable Chromium (IV) 500 N/A 36 25 N/A Acceptable Copper 30 000 N/A 27 13 N/A Acceptable Lead 1200 N/A 90 18 N/A Acceptable Mercury 120 N/A 0.1 0.1 N/A Acceptable Mickel 1200 N/A 10 4 N/A Acceptable Total Recoverable Hydrocarbons (TRH) – Direct Contact TPH C3-C10 5600 215 ND ND N/A Acceptable TPH C3-C20 5600 215 ND ND N/A Acceptable TPH C3-C34 5800 2500 770 153 N/A Acceptable TPH C3-C34 5800 2500 130 104		(mg/kg)	open space	(mg/kg)				
Cadmium 150 N/A ND ND N/A Acceptable Chromium (IV) 500 N/A 36 25 N/A Acceptable Copper 30 000 N/A 27 13 N/A Acceptable Lead 1200 N/A 90 18 N/A Acceptable Mercury 120 N/A 0.1 0.1 N/A Acceptable Nickel 1200 N/A 10 4 N/A Acceptable Zinc 60 000 N/A 54 41.6 N/A Acceptable Total Recoverable Hydrocarbons (TRH) – Direct Contact TPH C6-C10 5600 215 ND ND N/A Acceptable TPH C16-C34 5800 2500 770 153 N/A Acceptable TPH C34-C40 8100 2500 130 104 N/A Acceptable C10-C40 Fraction (sum) 18 100 5170 770			Metals and	inorganics				
Chromium (IV) S00 N/A 36 25 N/A Acceptable	Arsenic	500	N/A	16	9	N/A	Acceptable	
Copper 30 000	Cadmium	150	N/A	ND	ND	N/A	Acceptable	
Lead 1200 N/A 90 18 N/A Acceptable	Chromium (IV)	500	N/A	36	25	N/A	Acceptable	
Mercury 120	Copper	30 000	N/A	27	13	N/A	Acceptable	
Nickel 1200	Lead	1200	N/A	90	18	N/A	Acceptable	
Total Recoverable Hydrocarbons (TRH) - Direct Contact	Mercury	120	N/A	0.1	0.1	N/A	Acceptable	
Total Recoverable Hydrocarbons (TRH) - Direct Contact	Nickel	1200	N/A	10	4	N/A	Acceptable	
TPH C6-C10 5600 215 ND ND N/A Acceptable TPH C10-C16 4200 170 ND ND N/A Acceptable TPH C16-C34 5800 2500 770 153 N/A Acceptable TPH C34-C40 8100 2500 130 104 N/A Acceptable C10-C40 Fraction (sum) 18 100 5170 770 137 N/A Acceptable BTEX - Direct contact Benzene 140 95 ND ND N/A Acceptable Toulene 21 000 135 ND ND N/A Acceptable Ethylbenzene 5900 185 ND ND N/A Acceptable Xylenes (total) 17000 95 ND ND N/A Acceptable Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic 4	Zinc	60 000	N/A	54	41.6	N/A	Acceptable	
TPH C10-C16 4200 170 ND ND N/A Acceptable TPH C16-C34 5800 2500 770 153 N/A Acceptable TPH C34-C40 8100 2500 130 104 N/A Acceptable C10-C40 Fraction (sum) 18 100 5170 770 137 N/A Acceptable BETEX – Direct contact Benzene 140 95 ND ND N/A Acceptable Toulene 21 000 135 ND ND N/A Acceptable Ethylbenzene 5900 185 ND ND N/A Acceptable Xylenes (total) 17000 95 ND ND N/A Acceptable Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic 4 N/A 1.2 1.2 N/A Acceptable <td c<="" th=""><th></th><th>Total Reco</th><th>verable Hydrocar</th><th>bons (TRH) -</th><th>- Direct Contact</th><th></th><th></th></td>	<th></th> <th>Total Reco</th> <th>verable Hydrocar</th> <th>bons (TRH) -</th> <th>- Direct Contact</th> <th></th> <th></th>		Total Reco	verable Hydrocar	bons (TRH) -	- Direct Contact		
TPH C16-C34 5800 2500 770 153 N/A Acceptable TPH C34-C40 8100 2500 130 104 N/A Acceptable C10-C40 Fraction (sum) 18 100 5170 770 137 N/A Acceptable BTEX – Direct contact Benzene 140 95 ND ND N/A Acceptable Toulene 21 000 135 ND ND N/A Acceptable Ethylbenzene 5900 185 ND ND N/A Acceptable Xylenes (total) 17000 95 ND ND N/A Acceptable Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic 4 N/A 1.2 1.2 N/A Acceptable TeQ)" Total PAH 400 N/A ND ND N/A Acceptable Dieldr	TPH C6-C10	5600	215	ND	ND	N/A	Acceptable	
TPH C34-C40	TPH C10-C16	4200	170	ND	ND	N/A	Acceptable	
C10-C40 Fraction (sum) S170 S170 T70 T37 N/A Acceptable	TPH C16-C34	5800	2500	770	153	N/A	Acceptable	
BTEX - Direct contact	TPH C34-C40	8100	2500	130	104	N/A	Acceptable	
Benzene	C10-C40 Fraction	18 100	5170	770	137	N/A	Acceptable	
Benzene 140 95 ND ND N/A Acceptable	(sum)							
Toulene 21 000 135 ND ND N/A Acceptable Ethylbenzene 5900 185 ND ND N/A Acceptable Xylenes (total) 17000 95 ND ND N/A Acceptable Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic PAHs (as BaP TEQ)" 4 N/A 1.2 1.2 N/A Acceptable Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable			BTEX - Dire	ect contact				
Ethylbenzene 5900 185 ND ND N/A Acceptable Xylenes (total) 17000 95 ND ND N/A Acceptable Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic 4 N/A 1.2 1.2 N/A Acceptable PAHs (as BaP TEQ)" Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable	Benzene	140	95	ND	ND	N/A	Acceptable	
ND N/A Acceptable	Toulene	21 000	135	ND	ND	N/A	Acceptable	
Polyaromatic Hydrocarbons (PAHs) Benzo(a)pyrene	Ethylbenzene	5900	185	ND	ND	N/A	Acceptable	
Benzo(a)pyrene 4 1.4 1.2 1.2 N/A Acceptable "Carcinogenic PAHs (as BaP TEQ)" 4 N/A 1.2 1.2 N/A Acceptable Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable	Xylenes (total)	17000	95	ND	ND	N/A	Acceptable	
"Carcinogenic 4 N/A 1.2 1.2 N/A Acceptable PAHs (as BaP TEQ)" Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable		F	Polyaromatic Hyd	rocarbons (F	PAHs)			
PAHs (as BaP TEQ)" Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable	Benzo(a)pyrene	4	1.4	1.2	1.2	N/A	Acceptable	
TEQ)" N/A ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable	"Carcinogenic	4	N/A	1.2	1.2	N/A	Acceptable	
Total PAH 400 N/A ND ND N/A Acceptable Dieldrin 10 N/A ND ND N/A Acceptable	-							
Dieldrin 10 N/A ND ND N/A Acceptable								
	Total PAH	400	N/A	ND	ND	N/A	Acceptable	
Chlordane 90 N/A ND ND N/A Acceptable	Dieldrin	10	N/A	ND	ND	N/A	Acceptable	
	Chlordane	90	N/A	ND	ND	N/A	Acceptable	

Table 4. Continued...

Analyte	NSW DEC	Ecological	Maximum	Average	95%	Acceptability
	Health-based	Screening	concentratio	concentrat	UCL	
	Investigation	Level	n detected	ion		
	Levels,	Commercial	(mg/kg)	detected		
	HIL D	and Industrial		(mg/kg)		
	(mg/kg)					
		Phenolic Co	ompounds			
Phenol	45 000	N/A	ND	ND	N/A	Acceptable

ND = Non Detect N/A = Not Applicable

7. DISCUSSION

7.1 Field Observations

During the course of the field investigation no building materials were seen within the soil samples. There was some visible and olfactory signs of hydrocarbon noted during the investigation within some of the samples. Just under the slab onsite was a layer of asphalt.

7.2 Chemical analysis - Health Investigation Levels (HILs) & Health Screening Levels (HSLs)

All areas required for the contamination assessment of heavy metals and hydrocarbons analysis, indicated chemical concentrations below the relevant health Investigation levels. These results indicate that those areas identified as having the potential for contamination were determined to be acceptable chemically. The results returning acceptable concentrations for the proposed land use within areas of concern which had been identified. It appears that the site from a chemical analysis is appropriate for the proposed land use.

7.3 Ecological Screening Levels (ESLs)

Analysis of Site Specific Ecological Screening Levels, across the site recorded no exceedances of the Ecological Screening Levels (EILs).

7.4 Past Reports

Network Geotechnics Pty Ltd: W21195/1-A, 03/10/2001

Focusing on the contamination section of the past report. Testing was focused around the UPSS within two boreholes and was conducted down to 1m of depth. The contaminated analysed in the past report where lead, TPH and BTEX. The lead levels within the past report are comparable to the lead levels reported within the current report. The BTEX levels where the same in both reports with no detectable limits. TPH levels within the past report where slightly higher than the TRH levels within the current report. One of the samples spiked significantly within the past report but if

matched to relevant NEPM 2013 HILs the level would still be acceptable for the proposal. Several hypothesis can be suggested for the increase in TPH levels. The older report was conducted in 2001. Some bioremediation may have occurred within this time if there where areas of oxygen under the slab. Reporting has changed from TPH to TRH since NEPM 2013 release including HIL levels. Also the past report only tested to 1m bgl. The current report as specified within the guidelines tested to up to 3m bgl.

7.5 Waste Classification

Based on the contaminates analysed the waste classification for the underlying soil can be classified as general solid waste. This is based on Table 1: CT1 & CT2 values for classifying waste by chemical assessment without the TCLP test, within the waste classification guidelines.

8. RECOMMENDATIONS – UPSS TANK DECOMMISSION AND REMOVAL

It is recommended that the decommissioned UPSS tank be removed and disposed off site. The NSW EPA UPSS Technical Note: Decommissioning, abandonment and removal of UPSS shall be used as a guideline for the removal of the UPSS tank. Removal of the tank must be undertaken in accordance with NSW legislation and guidance, relevant Australian Standards and applicable work health and safety legislation.

9 CONCLUSIONS

EnviroTech Pty. Ltd. has been engaged by the client to undertake a Phase 2 Contamination Assessment for the site of the proposed development in line with the scope detailed in section 1.3 of the body of this report.

Soil sample results were compared to the Health Investigation Levels (HILs) Guidelines and Ecological Screening Levels (ESLs) for residential allotments with limited soil access (NEPM 2013). Chemically the results meet the criteria of the Health Investigation Limits for all of the analysed contaminants across the site.

In relation to the area of investigation this area is deemed suitable for the proposed development.

10 REFERENCES

- Assessment of Site Contamination, National Environment Protection Measure, 2013 amendment.
- Australian Standard AS 4482.1 *Guide to the sampling and investigation of potentially contaminated soil. Part 1: Non-volatile and semi-volatile compounds.*
- Australian Standard AS 4482.2 Guide to the sampling and investigation of potentially contaminated soil. Part 2: Volatile substances
- Guidelines for the Assessment and Management of Groundwater Contamination, NSW DEC, 2007.
- Guidelines for Assessing Service Stations, NSW EPA, 1994
- Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 2000.
- Guidelines for the NSW Site Auditor Scheme, NSW DEC (NSW DECC), Second Edition, April 2006.
- Sampling Design Guidelines NSW EPA, 1995.
- Waste Classification Guidelines Part 1: Classifying Waste, NSW OEH, December 2009

11 LIMITATIONS

The information contained within this report have been prepared exclusively for the client. Envirotech has carried out the investigation with a degree of care and skill ordinarily exercised in similar investigations by reputable members of the environmental industry in Australia. No other warranty, expressed or implied, is made or intended. This report is to be read in its entirety including attachments and appendixes and should not read in individual sections.

A third party should not rely upon the information prior to making an assessment that the scope of work conducted meets their specific needs. Envirotech cannot be held liable for third party reliance on this document.

The sub-surface environment can vary greatly across an individual site. The conclusions presented in this report are based on limited investigation of conditions at specific sampling locations chosen to be as representative as possible under the given circumstances. However, it is possible that this investigation may not have encountered all areas of contamination at the site due to the limited sampling and testing program undertaken.

Envirotech's professional opinions are based upon its professional judgment, experience, training and results from analytical data. In some cases further testing and analysis may be required, thus producing different results and/or opinions. ADE has limited its investigation to the scope agreed upon with its client.

APPENDIX I — HEALTH INVESTIGATION LEVELS (HILS)

Table 5 Health Investigation Levels (HILs) for Soil Contaminants

Table 5 Health Investigation Levels (HILs) for Soil Contaminants								
	Health-based investigation levels (mg/kg)							
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D				
Metals and Inorganics								
Arsenic ²	100	500	300	3 000				
Beryllium	60	90	90	500				
Boron	4500	40 000	20 000	300 000				
Cadmium	20	150	90	900				
Chromium (VI)	100	500	300	3600				
Cobalt	100	600	300	4000				
Copper	6000	30 000	17 000	240 000				
Lead ³	300	1200	600	1 500				
Manganese	3800	14 000	19 000	60 000				
Mercury (inorganic) ⁵	40	120	80	730				
Methyl mercury ⁴	10	30	13	180				
Nickel	400	1200	1200	6 000				
Selenium	200	2033	700	10 000				
Zinc	7400	60 000	30 000	400 000				
Cyanide (free)	250	300	240	1 500				
Polycyclic Aromatic Hy	drocarbons (PAH	(s)						
Carcinogenic PAHs								
(as BaP TEQ) ⁶	3	4	3	40				
Total PAHs ⁷	300	400	300	4000				
Phenols								
Phenol	3000	45 000	40 000	240 000				
Pentachlorophenol	100	130	120	660				
Cresols	400	4 700	4 000	25 000				
Organochlorine Pesticio		1						
DDT+DDE+DDD	240	600	400	3600				
Aldrin and dieldrin	6	10	10	45				
Chlordane	50	90	70	530				
Endosulfan	270	400	340	2000				
Endrin	10	20	20	100				
Heptachlor	6	10	10	50				
HCB	10	15	10	80				
Methoxychlor	300	500	400	2500				
Mirex	10	20	20	100				
Toxaphene	20	30	30	160				
Herbicides	600		000	- 000				
2,4,5-T	600	900	800	5000				
2,4-D	900	1600	1300	9000				
MCPA	600	900	800	5000				
MCPB	600	900	800	5000				
Mecoprop	600	900	800	5000				
Picloram	4500	6600	5700	35000				

	Health-based	l investigation l	evels (mg/kg)	
Chemical	Residential ¹ A	Residential ¹ B	Recreational ¹ C	Commercial/ industrial ¹ D
Other Pesticides				
Atrazine	320	470	400	2500
Chlorpyrifos	160	340	250	2000
Bifenthrin	600	840	730	4500
Other Organics				
PCBs ⁸	1	1	1	7
PBDE Flame				
Retardants (Br1–Br9)	1	2	2	10

APPENDIX II – ANALYTICAL RESULTS

CERTIFICATE OF ANALYSIS

Work Order : **ES1603935** Page : 1 of 14

Client : ENVIROTECH P/L Laboratory : Environmental Division Sydney

Contact : MR SIMON DOBERER Contact

Address : PO BOX 3086 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

EAST BLAXLAND NSW, AUSTRALIA 2774

E-mail : simon@envirotech.com.au E-mail

 Telephone
 : +61 02 47399232
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 47392421
 Facsimile
 : +61-2-8784 8500

Project : Kinghorne Street, NOWRA QC Level : NEPM 2013 B3 & ALS QC Standard

 Order number
 : 277015
 Date Samples Received
 : 22-Feb-2016 14:45

 C-O-C number
 : -- Date Analysis Commenced
 : 23-Feb-2016

Sampler : SIMON DOBERER Issue Date : 29-Feb-2016 13:15

Site :---

Quote number . --- No. of samples received : 18

No. of samples analysed : 18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Pabi Subba	Senior Organic Chemist	Sydney Inorganics, Smithfield, NSW
Pabi Subba	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Shobhna Chandra	Metals Coordinator	Sydney Inorganics, Smithfield, NSW

Page : 2 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

• Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1 1.5	TP1 3.0	TP2 1.5	TP2 3.0	TP3 1.5
·	Cli	ient samplii	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-001	ES1603935-002	ES1603935-003	ES1603935-004	ES1603935-005
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	13.1	26.3	17.4	10.1	16.6
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	6	8	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	16	36	10	21	9
Copper	7440-50-8	5	mg/kg	6	13	6	<5	8
Lead	7439-92-1	5	mg/kg	16	18	6	10	6
Nickel	7440-02-0	2	mg/kg	2	2	10	<2	10
Zinc	7440-66-6	5	mg/kg	43	56	34	<5	33
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
EP075(SIM)A: Phenolic Compound								
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	<1	<1
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	<2	<2
EP075(SIM)B: Polynuclear Aromat	ic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 4 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1 1.5	TP1 3.0	TP2 1.5	TP2 3.0	TP3 1.5
	Cli	ent sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-001	ES1603935-002	ES1603935-003	ES1603935-004	ES1603935-005
•				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	120	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	120	<50	<50	<50	<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	110	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	120	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	230	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalen	е	50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 5 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID		TP1 1.5	TP1 3.0	TP2 1.5	TP2 3.0	TP3 1.5
	Cli	ent sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-001	ES1603935-002	ES1603935-003	ES1603935-004	ES1603935-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	121	120	112	121	123
2-Chlorophenol-D4	93951-73-6	0.5	%	103	103	110	104	107
2.4.6-Tribromophenol	118-79-6	0.5	%	106	120	113	115	112
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	115	116	120	116	114
Anthracene-d10	1719-06-8	0.5	%	121	122	124	124	109
4-Terphenyl-d14	1718-51-0	0.5	%	122	122	121	121	118
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	84.0	75.5	95.4	105	88.9
Toluene-D8	2037-26-5	0.2	%	97.7	85.6	93.0	102	95.2
4-Bromofluorobenzene	460-00-4	0.2	%	86.6	78.5	93.9	98.6	87.9

Page : 6 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP3 3.0	TP4 1.5	TP4 3.0	TP5	TP6
	Cli	ient sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-006	ES1603935-007	ES1603935-008	ES1603935-009	ES1603935-010
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	19.1	12.1	15.0	24.2	21.9
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	10	9	6	11	11
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	36	31	21	31	30
Copper	7440-50-8	5	mg/kg	12	11	21	10	9
Lead	7439-92-1	5	mg/kg	14	19	90	13	11
Nickel	7440-02-0	2	mg/kg	<2	<2	7	<2	2
Zinc	7440-66-6	5	mg/kg	18	17	242	8	7
EG035T: Total Recoverable Mercu	iry by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)A: Phenolic Compound	ds							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	<1	<1
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	<2	<2
EP075(SIM)B: Polynuclear Aromat	ic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 7 of 14
Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP3 3.0	TP4 1.5	TP4 3.0	TP5	TP6
	Cli	ient sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-006	ES1603935-007	ES1603935-008	ES1603935-009	ES1603935-010
•				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Cont	inued						
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	130	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	170	200	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	170	330	<50	<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	170	260	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	130	110	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	300	370	<50	<50
^ >C10 - C16 Fraction minus Naphthalen	e	50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 8 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP3 3.0	TP4 1.5	TP4 3.0	TP5	TP6
	Cli	ent sampli	ing date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-006	ES1603935-007	ES1603935-008	ES1603935-009	ES1603935-010
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	119	114	123	118	113
2-Chlorophenol-D4	93951-73-6	0.5	%	99.2	109	103	105	99.9
2.4.6-Tribromophenol	118-79-6	0.5	%	85.5	104	127	110	105
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	110	116	117	113	112
Anthracene-d10	1719-06-8	0.5	%	120	116	119	114	118
4-Terphenyl-d14	1718-51-0	0.5	%	121	120	124	118	123
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.5	88.9	74.6	78.4	78.4
Toluene-D8	2037-26-5	0.2	%	89.6	105	85.2	87.2	91.0
4-Bromofluorobenzene	460-00-4	0.2	%	81.9	89.2	75.7	80.1	78.4

Page : 9 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP7	TP8	TP9	TP10	TP11
,	Cli	ient sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-011	ES1603935-012	ES1603935-013	ES1603935-014	ES1603935-015
p				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	23.6	14.6	16.3	21.3	15.7
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	10	5	9	9	9
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	34	18	29	30	20
Copper	7440-50-8	5	mg/kg	14	7	14	14	13
Lead	7439-92-1	5	mg/kg	11	10	12	11	11
Nickel	7440-02-0	2	mg/kg	2	3	5	2	<2
Zinc	7440-66-6	5	mg/kg	10	8	23	16	10
EG035T: Total Recoverable Merc								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)A: Phenolic Compoun			3 3					
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1	<1	<1
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2	<2	<2
		_	mg/kg					
EP075(SIM)B: Polynuclear Aroma Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	83-32-9 86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-73-7 85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Denz(a)antinacene	50-55-3	0.5	ilig/kg	~0.5	~0.0	~0.0	~0.0	70.0

Page : 10 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP7	TP8	TP9	TP10	TP11
	CI	ient sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-011	ES1603935-012	ES1603935-013	ES1603935-014	ES1603935-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons - Cont	inued						
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	510
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	350
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	860
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	130	<100	<100	<100	770
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	130	<50	<50	<50	770
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2) EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
\ Sum of BTEX	90-47-0	0.3	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	4220.00.7	0.2	0 0	<0.2	<0.2	<0.5	<0.5	<0.5
i otal Aylelles	1330-20-7	0.5	mg/kg	~U.5	\0.5	\0.5	\0.5	\U.5

Page : 11 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP7	TP8	TP9	TP10	TP11
	Cli	ent sampli	ing date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]
Compound	CAS Number	LOR	Unit	ES1603935-011	ES1603935-012	ES1603935-013	ES1603935-014	ES1603935-015
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	114	118	119	117	121
2-Chlorophenol-D4	93951-73-6	0.5	%	97.3	105	102	107	98.8
2.4.6-Tribromophenol	118-79-6	0.5	%	109	115	112	104	98.7
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	111	116	121	120	115
Anthracene-d10	1719-06-8	0.5	%	113	121	120	120	122
4-Terphenyl-d14	1718-51-0	0.5	%	122	124	121	121	117
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.6	89.0	82.9	95.8	97.2
Toluene-D8	2037-26-5	0.2	%	100	93.0	93.2	103	110
4-Bromofluorobenzene	460-00-4	0.2	%	87.6	82.2	83.8	90.4	93.9

Page : 12 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP12	TP13	TP14		
(Matrix: GGIZ)	Clie	ent sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]		
Compound	CAS Number	LOR	Unit	ES1603935-016	ES1603935-017	ES1603935-018		
Compound	OAS Number	2071		Result	Result	Result	Result	Result
EA055: Moisture Content				- Nooun	T COOLIT	T too a.t	T toout	1100011
Moisture Content (dried @ 103°C)		1	%	17.8	19.6	15.4		
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	6	10	16		
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1		
Chromium	7440-47-3	2	mg/kg	23	33	17		
Copper	7440-50-8	5	mg/kg	14	27	19		
Lead	7439-92-1	5	mg/kg	8	37	13		
Nickel	7440-02-0	2	mg/kg	8	4	<2		
Zinc	7440-66-6	5	mg/kg	60	39	20		
EG035T: Total Recoverable Merc								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1		
EP075(SIM)A: Phenolic Compour								
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5		
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	<0.5		
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	<0.5		
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	<1		
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	<0.5		
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	<0.5		
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	<0.5		
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	<0.5		
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	<0.5		
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	<0.5		
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	<0.5		
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	<2		
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5		
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5		

Page : 13 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP12	TP13	TP14		
	Cli	ent sampli	ng date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]		
Compound	CAS Number	LOR	Unit	ES1603935-016	ES1603935-017	ES1603935-018		
,				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hvdrocarbons - Cont	inued						
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2		
EP080/071: Total Petroleum Hydroca	arbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10		
C10 - C14 Fraction		50	mg/kg	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50		
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10		
^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10		
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50		
^ >C10 - C16 Fraction minus Naphthalen	ie	50	mg/kg	<50	<50	<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2		
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5		

Page : 14 of 14 Work Order : ES1603935

Client : ENVIROTECH P/L
Project : Kinghorne Street, NOWRA

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	TP12	TP13	TP14		
	Cli	ient sampli	ing date / time	[20-Feb-2016]	[20-Feb-2016]	[20-Feb-2016]		
Compound	CAS Number	LOR	Unit	ES1603935-016	ES1603935-017	ES1603935-018		
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1		
EP075(SIM)S: Phenolic Compound S	Gurrogates							
Phenol-d6	13127-88-3	0.5	%	122	116	114		
2-Chlorophenol-D4	93951-73-6	0.5	%	100	102	96.9		
2.4.6-Tribromophenol	118-79-6	0.5	%	97.2	93.7	85.1		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	113	113	110		
Anthracene-d10	1719-06-8	0.5	%	111	111	118		
4-Terphenyl-d14	1718-51-0	0.5	%	116	123	113		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.8	78.0	85.4		
Toluene-D8	2037-26-5	0.2	%	94.2	88.0	95.4		
4-Bromofluorobenzene	460-00-4	0.2	%	82.5	78.2	83.7		

APPENDIX III - LABORATORY QA/QC

CHAIN OF	□ADELAIDE 21 Burma Road Pooraka SA 5095 Ph: 08 8359 0890 E: adelaide@alsglobal.com	□MACKAY 78 Härböür Roād Mackāy QLD 4740 Ph: 07 4944 0177 E: mackay@alsglobal.com	□NĒWĆAŠĪLĒ 5 Rose Ğum Road Warabrook NSW 2304 Ph; 02 4968 9433 E: samples.newcastle@alsglobal.com	üSYDNEY 277-288 Woodpark Road Smithfield NSW 2184 Ph: 02 8784 8565 E. samples sydney@alsglobal.com
CUSTODY	□BRISBANE 32 Shand Street Stafford QLD 4053 Ph: 07 3243 7222 E: samples brisbane@alsglobal.com	□MELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples.melbourne@alsglobal.com	□NOWRA 4/13 Geary Place North Nowra NSW 2541 Ph; 024423 2063 E: nowra@alsglobal.com	©TOWNSVILLE 14-15 Desma Court Bohle QLD 4818 Ph: 07 4796 0600 E: townesville environmental@alsglobal.com
ALS Laboratory: please tick →	□GLADSTONE 46 Callemondah Drive Clinton QLD 4680 Ph: 07 7471 5600 E: gladstone@alsglobal.com	□MUDGEE 27 Sydney Road Mudgee NSW 2850 Ph; 02 6372 6735 E; mudgee.mail@alsglobal.com	□PERTH 10 Hod Way Malaga WA 6090 Ph: 08 9209 7655 E: samples.perth@alsglobal.com	DWOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph: 02.4225 3125 E; pontkembla@alsglobal.com
CLIENT: Envirotech PTY LTD	TURNAROUND REQUIREMENTS:	☐ Standard TAT (List due date):		FOR LABORATORY USE ONLY (Circle)
OFFICE: Blaxland	(Standard TAT may be longer for some tests e.g Ultra Trace Organics)	(Standard TAT may be longer for some tests e.g Non Standard or urgent TAT (List due date): Ultra Trace Organics)	A STATE OF THE STA	Custody Seal mac/? Yes No N/A
PROJECT: Kinghorne Street, NOWRA	ALS QUOTE NO.:		COC SEQUENCE NUMBER (Circle)	File too mozeni ce bricks presentuburi Yes No N/A
ORDER NUMBER: 277015			coc: 1 2 3 4 5 6 7 Ran	Random Sample Temperature on Receipt:
PROJECT MANAGER: Simon Doberer CC	CONTACT PH: 0247 399232		OF: 1 2 3 4 5 6 7 Off	Other comment:
SAMPLER: Simon Doberer SA	SAMPLER MOBILE:	RELINQUISHED BY:	RECEIVED BY: RELING	RELINQUISHED BY: RECEIVED BY:
COC emailed to ALS? (YES / NO)	EDD FORMAT (or default):	Simon Doberer	Land Armed	
Email Reports to (will default to PM if no other addresses are listed): simon@envirotech.com.au	non@envirotech.com.au	DATE/TIME:	DATE/TIME: 2:CC DATE/TIME:	ME: DATE/TIME:
Email Invoice to (will default to PM if no other addresses are listed):		22/02/2016	551000	

CONTAINER INFORMATION TYPE & PRESERVATIVE (refer to
DATE / TIME IX TYPE & PRESERVATIVE (refer to AL CONTAINERS S-27
(refer to TOTAL CONTAINERS
TOTAL CONTAINERS

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; AB = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; V = VOA Vial HCJ Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sodium Bisulphate Preserved; AV = Airfreight Unpreserved Vial SG = Sulfuric Preserved Plastic; HS = HCJ preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag.

CUSTODY **CHAIN OF**

□BRISBANE 32 Shand Street Stafford QLD 4053 Ph: 07 3243 7222 E: samples.brisbane@alsglobal.com □ADELAIDE 21 Burma Road Pooraka SA 5095 Ph: 08 8359 0890 E: ädeläide@älsglöbäl.com **IJGLADSTONE 46 Callemondah Drive Clinton QLD 4680**

> □MAČKAY 78 Harbour Road Mackay QLD 4740 Ph: 07 4944 0177 E: mackay@alsglobal.com □MELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph: 03 8549 9600 E: samples.melbourne@alsglobal.com

□PERTH 10 Hod Way Malaga WA 6090

□NOWRA 4/13 Geary Place North Nowra NSW 2541 Ph: 024423 2063 E: nowra@alsglobal.com □NEWCASTLE 5 Rose Gum Road Warabrook NSW 2304 Ph: 02 4968 9433 E: samples.newcastle@alsglobal.com

> ☐TOWNSVILLE 14-15 Desma Court Bohle QLD 4818
> Ph: 07 4796 0600 E: townesville.environmental@alsglobal.com □SYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples.sydney@alsglobal.com

	Entry ALS Laboratory: please tick →		: 46 Callem 00 E: glads	□GLADSTONE 46 Callemondah Drive Clinton QLD 4680 Ph: 07 7471 5600 E: gladstone@alsglobal.com	□MUDGEE 27 Sydney Road Mudgee NSW 2850 Ph: 02 6372 6735 E: mudgee.mail@alsglobal.com	iney Road Mudgee ≘: mudgee.mail@al	NSW 2850 sglobal.com	□PERTH 10 Hod Way Malaga WA 6090 Ph; 08 9209 7655 E: samples.perth@alsglobal.com	bal.com	©WOLLONGC Ph: 02 4225 31	□WOLLONGONG 99 Kenny Street Wollongong NSW 2500 Ph; 02 4225 3125 E; portkembla@alsglobal.com
CLIENT: E	Envirotech PTY LTD		TURNA	TURNAROUND REQUIREMENTS:	Standa	Standard TAT (List due date):	ie date):			FOR LABORATORY USE ONLY (Circle)	VLY (Circle)
OFFICE: B	Blaxland		(Standard Ultra Tr <u>ac</u>	(Standard TAT may be longer for some tests e.g Ultra Trace Organics)		Non Standard or urgent TAT (Li	nt TAT (List d	ist due date):	Custody Sed Intect?	tacf?	Yes No NA
ROJECT: K	PROJECT: Kinghorne Street, NOWRA		ALS QU	ALS QUOTE NO.:				COC SEQUENCE NUMBER (Circle)	Free Its / frozer	Free ite / frozen ice bricks present upon receipt?	tupon Yes No NA
ORDER NUN	ORDER NUMBER: 277015							coc: 1 2 3 4 5 6	7 Random Sample	Random Sample Temperature on Receipt:	Receipt: 'C
ROJECT M	PROJECT MANAGER: Simon Doberer	CONTACT PH: 0247 399232	1: 0247 3	199232				OF: 1 2 3 4 5 6	7 Other comment		
SAMPLER: S	SAMPLER: Simon Doberer	SAMPLER MOBILE:)BILE:		RELINQUISHED BY:	SHED BY:		RECEIVED BY:	RELINQUISHED BY:	Y:	RECEIVED BY:
OC emailed	COC emailed to ALS? (YES / NO)	EDD FORMAT (or default):	(or def	ault):	Simon Doberer	berer		は、河			-
mail Repor	Email Reports to (will default to PM if no other addresses are listed): simon@envirotech.com.au	dresses are listed): simon@enviro	tech.con	n.au	DATE/TIME:	!!!		DATE/TIME:	DATE/TIME:		DATE/TIME:
mail Invoic	Email Invoice to (will default to PM if no other addresses are listed):	resses are listed):			22/02/2016			22/2/16 2:59			
COMMENTS	COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	R DISPOSAL:									
USE	SAMPLE MATRIX, SOLII	SAMPLE DETAILS MATRIX: SOLID (S) WATER (M)		CONTAINER INFORMATION	ORMATION		ANALYSIS Where Metai	ANALYSIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) there Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	nust be listed to attract ed) or Dissolved (field	suite price) filtered bottle	Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL ONTAINERS					Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
						со	S-27				
I	ТР9	20/02/2016	တ	10 march 1 m		_	\				
દ્ર	ТР10	20/02/2016	ø			_	\				
4	ТР11	20/02/2016	v			_					
Ē	ТР12	20/02/2016	ø			_	/				
47	ТР13	20/02/2016	s			1	//				
\$	ТР14	20/02/2016	w			1					
					And the second						
			-				į				
					Spinish and the spinish and th						
					TOTAL	18					
vater Contain / = VOA Vial H / = Zinc Acetat	Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH = Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved: V = VOA VIal Hydroxide Preserved; V = VOA VIal Hydroxide Preserved; AV = Airfreight Unpreserved VIal SG = Sulfuric Preserved Amber Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Solis; B = Unpreserved Bag.	Nitric Preserved Plastic; ORC = Nitric Inhate Preserved; VS = VOA Vial Sult Jottles; ST = Sterile Bottle; ASS = Pla	Preserve uric Prese stic Bag fo	d ORC; SH = Sodium Hydroxide/Cd Paved; AV = Airfreight Unpreserved Via or Acid Sulphate Soils; B = Unpreserved	reserved; S = S I SG = Sulfuric I ed Bag.	Preserved Ambe		Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved Plastic; S = Sodium HydroxidePreserved Plastic; AG = Amber Glass Unpreserved; AP - Airfreight Unpreserved Plastic; F = Formaldehyde Preserved Glass; V = VOA Vial HCI Preserved; VB = VOA Vial Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; V = VOA Vial Sulfuric Preserved Plastic; VB = VOA Vial Sulfuric Preserved; VB = VOA Vial Sulfuric Preser	nt Unpreserved Plastic ion bottle; SP = Sulfuric	c Preserved Plasti	c; F = Formaldehyde Preserved Glass;
= Zinc Acetat	te Preserved Bottle; E = EDTA Preserved E	3ottles; ST = Sterile Bottle; ASS = Pla	stic Bag fo	or Acid Sulphate Soils; B = Unpreserve	ed Bag.	0001 400			- I to properties a lease, To - I to properties openies	The production issue, to - the properties openiminately come, or - outside	i - Ivi pi over rou i iasuk, i io - I ioi pi esei rou openiato i ovute, oi - ovuitain r i esei reu r iasu

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES1603935** Page : 1 of 6

Client : ENVIROTECH P/L Laboratory : Environmental Division Sydney

Contact : MR SIMON DOBERER Telephone : +61-2-8784 8555

Project : Kinghorne Street, NOWRA Date Samples Received : 22-Feb-2016

Site :---- Issue Date : 29-Feb-2016

Sampler : SIMON DOBERER No. of samples received : 18
Order number : 277015 No. of samples analysed : 18

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6
Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005T: Total Metals by ICP-AES	ES1603953007	Anonymous	Zinc	7440-66-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL	Evaluation: *	= Holding time breach ; \checkmark = Within holding time.

Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
TP1 1.5,	TP1 3.0,	20-Feb-2016				24-Feb-2016	05-Mar-2016	✓
TP2 1.5,	TP2 3.0,							
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13,	TP14							
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
TP1 1.5,	TP1 3.0,	20-Feb-2016	24-Feb-2016	18-Aug-2016	✓	25-Feb-2016	18-Aug-2016	✓
TP2 1.5,	TP2 3.0,							
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13,	TP14							

Page : 3 of 6
Work Order : ES1603935

Client : ENVIROTECH P/L

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by	FIMS							
Soil Glass Jar - Unpreserved (EG035T) TP14		20-Feb-2016	24-Feb-2016	19-Mar-2016	,	25-Feb-2016	19-Mar-2016	
Soil Glass Jar - Unpreserved (EG035T)		20-Feb-2016	24-Feb-2016	19-IVIA1-2010	✓	25-Feb-2016	19-Mai-2010	✓
TP1 1.5,	TP1 3.0,	20-Feb-2016	24-Feb-2016	19-Mar-2016	1	26-Feb-2016	19-Mar-2016	√
TP2 1.5,	TP2 3.0,				•			,
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13	17 12,							
EP080/071: Total Petroleum Hydrocarbo	ns							
Soil Glass Jar - Unpreserved (EP071)	····							
TP1 1.5,	TP1 3.0,	20-Feb-2016	23-Feb-2016	05-Mar-2016	1	24-Feb-2016	03-Apr-2016	✓
TP2 1.5,	TP2 3.0,							·
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13,	TP14							
EP075(SIM)B: Polynuclear Aromatic Hyd	drocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)								
TP1 1.5,	TP1 3.0,	20-Feb-2016	23-Feb-2016	05-Mar-2016	✓	24-Feb-2016	03-Apr-2016	✓
TP2 1.5,	TP2 3.0,							
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13,	TP14							

Page : 4 of 6
Work Order : ES1603935

Client : ENVIROTECH P/L

Matrix: SOIL					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydro	ocarbons							
Soil Glass Jar - Unpreserved (EP08	30)							
TP1 1.5,	TP1 3.0,	20-Feb-2016	23-Feb-2016	05-Mar-2016	✓	25-Feb-2016	05-Mar-2016	✓
TP2 1.5,	TP2 3.0,							
TP3 1.5,	TP3 3.0,							
TP4 1.5,	TP4 3.0,							
TP5,	TP6,							
TP7,	TP8,							
TP9,	TP10,							
TP11,	TP12,							
TP13,	TP14							

Page : 5 of 6 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Matrix. SOIL	-			Lvaluatio	II. W - Quality Oc	introl frequency	Thot within specification, V = Quality Control frequency within specification
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	40	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 6 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order : **ES1603935** Page : 1 of 10

Client : **ENVIROTECH P/L** Laboratory : Environmental Division Sydney

Contact : MR SIMON DOBERER Contact :

Address : PO BOX 3086 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

E-mail : simon@envirotech.com.au E-mail

 Telephone
 : +61 02 47399232
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 02 47392421
 Facsimile
 : +61-2-8784 8500

Project : Kinghorne Street, NOWRA QC Level : NEPM 2013 B3 & ALS QC Standard

Order number : 277015 Date Samples Received : 22-Feb-2016
C-O-C number Date Analysis Commenced : 23-Feb-2016

Sampler SIMON DOBERER Issue Date : 29-Feb-2016

Site : --- No. of samples received : 18

Quote number : --- No. of samples analysed : 18

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

Accredited for

compliance with

ISO/IEC 17025.

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

EAST BLAXLAND NSW. AUSTRALIA 2774

- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited
Laboratory 825

Signatories
This documen

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Celine ConceicaoSenior SpectroscopistSydney Inorganics, Smithfield, NSWPabi SubbaSenior Organic ChemistSydney Inorganics, Smithfield, NSWPabi SubbaSenior Organic ChemistSydney Organics, Smithfield, NSWShobhna ChandraMetals CoordinatorSydney Inorganics, Smithfield, NSW

Page : 2 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 374247)								
ES1603935-001	TP1 1.5	EA055-103: Moisture Content (dried @ 103°C)		1	%	13.1	13.8	5.56	0% - 50%
ES1603935-012	TP8	EA055-103: Moisture Content (dried @ 103°C)		1	%	14.6	13.4	8.79	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	374478)							
ES1603892-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	14	14	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	3	5	54.5	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	12	14.3	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	28	30	7.87	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	520	510	2.02	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	116	114	1.45	0% - 20%
ES1603935-008	TP4 3.0	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	21	20	0.00	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	7	4	46.4	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	6	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	21	13	44.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	90	85	6.34	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	242	228	6.09	0% - 20%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	374480)							
ES1603935-018	TP14	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	17	10	47.6	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	16	5	102	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	19	10	63.6	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	13	10	30.3	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	20	14	35.2	No Limit
ES1604119-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	14	14	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	11	13	12.2	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	6	25.8	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	75	76	0.00	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	11	13	11.7	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	97	96	1.68	0% - 50%
EG035T: Total Reco	overable Mercury by FIN	MS (QC Lot: 374479)							
ES1603892-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.00	No Limit
ES1603935-008	TP4 3.0	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Page : 4 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Rec	overable Mercury by	FIMS (QC Lot: 374481)							
ES1603935-018	TP14	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1604119-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP075(SIM)A: Pher	nolic Compounds (QC	C Lot: 371644)							
ES1603935-001	TP1 1.5	EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
ES1603935-011	TP7	EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
FP075(SIM)B: Poly	nuclear Aromatic Hyd	drocarbons (QC Lot: 371644)	1. 11 0		33	_	_		
ES1603935-001	TP1 1.5	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	11 1 1.0	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphinylene EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Antinacene EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			JJ JZ-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	ilig/kg	٧٠.٥	٧٠.٥	0.00	NO LITTLE
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	T	Erura(alivi). Dibeliz(a.fi)alitiliacelle	JJ-1 U=J	0.0	mg/kg	-0.0	-0.0	0.00	140 LIIIII

Page : 5 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	!	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyr	nuclear Aromatic Hydroc	carbons (QC Lot: 371644) - continued							
ES1603935-001	TP1 1.5	EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
ES1603935-011	TP7	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 371645)							
ES1603935-001	TP1 1.5	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	120	120	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1603935-011	TP7	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons								1
ES1603935-001	TP1 1.5	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1603935-001	TP7	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
			3	10	iiig/kg	110	-10	0.00	140 LIIIII
		s - NEPM 2013 Fractions (QC Lot: 371645)		100		440	440	0.00	Nie Liesit
ES1603935-001	TP1 1.5	EP071: >C16 - C34 Fraction		100	mg/kg	110	110	0.00	No Limit

Page : 6 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 371645) - continued							
ES1603935-001	TP1 1.5	EP071: >C34 - C40 Fraction		100	mg/kg	120	120	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1603935-011	TP7	EP071: >C16 - C34 Fraction		100	mg/kg	130	110	16.8	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 371646)							
ES1603935-001	TP1 1.5	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1603935-011	TP7	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	Lot: 371646)								
ES1603935-001	TP1 1.5	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1603935-011	TP7	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 7 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005T: Total Metals by ICP-AES (QCLot: 3744)	78)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	108	86	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	101	83	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	91.4	76	128	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	114	86	120	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	98.7	80	114	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	99.9	87	123	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	102	80	122	
EG005T: Total Metals by ICP-AES (QCLot: 3744)	80)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	111	86	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	105	83	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	94.0	76	128	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	110	86	120	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	107	80	114	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	102	87	123	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	107	80	122	
EG035T: Total Recoverable Mercury by FIMS (C	QCLot: 374479)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	80.0	70	105	
EG035T: Total Recoverable Mercury by FIMS (C	QCLot: 374481)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	86.7	70	105	
EP075(SIM)A: Phenolic Compounds (QCLot: 37	1644)								
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	76.9	60	114	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	71.5	54	114	
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	79.5	66	120	
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	90.2	68	126	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	86.1	70	120	
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	93.5	72	124	
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	82.7	71	123	
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	75.7	54	114	
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	82.2	67	127	
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	89.9	70	116	
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	16.6	10	57	
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	107	71	125	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 371644)								
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	87.5	73	127	

Page : 8 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 371644) - con	tinued						
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	88.9	72	124
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	92.1	77	127
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	93.0	69	123
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	90.1	70	126
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	93.9	68	116
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	86.8	63	121
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	97.8	74	126
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	94.4	75	127
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	82.7	62	118
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	86.5	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	82.6	72	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	84.8	61	121
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	90.5	77	125
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	90.9	75	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	85.9	74	128
EP080/071: Total Petroleum Hydrocarbons (QCLot: 37164	5)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	110	75	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	122	77	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	111	71	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: 37164	.6)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	83.8	68	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	ot: 371645)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	115	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	125	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	93.1	63	131
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	ot: 371646)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	81.1	68	128
EP080: BTEXN (QCLot: 371646)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	83.1	62	116
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	88.4	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	87.7	66	118
	106-42-3							
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	87.2	63	119
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	87.8	68	120
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	83.6	67	121

Page : 9 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Project : Kinghorne Street, NOWRA

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Met	tals by ICP-AES (QCLot: 374478)						
ES1603892-002	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	99.4	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	109	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	110	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	107	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	120	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	102	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	101	70	130
EG005T: Total Met	tals by ICP-AES (QCLot: 374480)						
ES1603953-007	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	110	70	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	111	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	102	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	122	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	83.4	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	99.3	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	# Not	70	130
					Determined		
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 374479)						
EG035T: Total Re ES1603892-001	coverable Mercury by FIMS (QCLot: 374479) Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	90.4	70	130
ES1603892-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	90.4	70	130
ES1603892-001 EG035T: Total Re	Anonymous coverable Mercury by FIMS (QCLot: 374481)						
ES1603892-001 E G035T: Total Re ES1603935-018	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14	EG035T: Mercury EG035T: Mercury	7439-97-6 7439-97-6	5 mg/kg	90.4	70 70	130
ES1603892-001 E G035T: Total Re ES1603935-018	Anonymous coverable Mercury by FIMS (QCLot: 374481)						
ES1603892-001 E G035T: Total Re ES1603935-018	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14						130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 nolic Compounds (QCLot: 371644)	EG035T: Mercury	7439-97-6	5 mg/kg	96.2	70	130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 nolic Compounds (QCLot: 371644)	EG035T: Mercury EP075(SIM): 2-Chlorophenol	7439-97-6 95-57-8	5 mg/kg 10 mg/kg	96.2	70	130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 nolic Compounds (QCLot: 371644)	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol	7439-97-6 95-57-8 88-75-5	5 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4	70 70 60	130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 nolic Compounds (QCLot: 371644)	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol	7439-97-6 95-57-8 88-75-5 59-50-7	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3	70 70 60 70	130 130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 nolic Compounds (QCLot: 371644)	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7	70 70 60 70 20	130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 molic Compounds (QCLot: 371644) TP1 1.5	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7	70 70 60 70 20	130 130 130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 molic Compounds (QCLot: 371644) TP1 1.5	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol EP075(SIM): Phenol	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5 108-95-2	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7 95.0	70 70 60 70 20 70	130 130 130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 molic Compounds (QCLot: 371644) TP1 1.5 ynuclear Aromatic Hydrocarbons (QCLot: 371644) TP1 1.5	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol EP075(SIM): Phenol	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5 108-95-2	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7 95.0	70 70 60 70 20 70	130 130 130 130 130 130
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 molic Compounds (QCLot: 371644) TP1 1.5	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol EP075(SIM): Phenol EP075(SIM): Acenaphthene EP075(SIM): Pyrene	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5 108-95-2	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7 95.0 73.1 76.1	70 70 60 70 20 70	
ES1603892-001 EG035T: Total Re ES1603935-018 EP075(SIM)A: Phe ES1603935-001 EP075(SIM)B: Poly ES1603935-001	Anonymous coverable Mercury by FIMS (QCLot: 374481) TP14 molic Compounds (QCLot: 371644) TP1 1.5 ynuclear Aromatic Hydrocarbons (QCLot: 371644) TP1 1.5 Petroleum Hydrocarbons (QCLot: 371645)	EP075(SIM): 2-Chlorophenol EP075(SIM): 2-Nitrophenol EP075(SIM): 4-Chloro-3-methylphenol EP075(SIM): Pentachlorophenol EP075(SIM): Phenol	7439-97-6 95-57-8 88-75-5 59-50-7 87-86-5 108-95-2 83-32-9 129-00-0	5 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg 10 mg/kg	96.2 84.7 77.4 86.3 34.7 95.0	70 70 60 70 20 70 70	130 130 130 130 130 130

Page : 10 of 10 Work Order : ES1603935

Client : ENVIROTECH P/L

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 371646)								
ES1603935-001	TP1 1.5	EP080: C6 - C9 Fraction		32.5 mg/kg	91.2	70	130		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 371645)							
ES1603935-001	TP1 1.5	EP071: >C10 - C16 Fraction		860 mg/kg	92.9	73	137		
		EP071: >C16 - C34 Fraction		3223 mg/kg	118	53	131		
		EP071: >C34 - C40 Fraction		1058 mg/kg	112	52	132		
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 371646)							
ES1603935-001	TP1 1.5	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	87.4	70	130		
EP080: BTEXN (Q	CLot: 371646)								
ES1603935-001	TP1 1.5	EP080: Benzene	71-43-2	2.5 mg/kg	70.6	70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	80.7	70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	77.8	70	130		
			106-42-3						
		EP080: Naphthalene	91-20-3	2.5 mg/kg	78.5	70	130		
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	79.6	70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	73.2	70	130		

APPENDIX IV – SAMPLING PLAN

